OKI Semiconductor

MSM6722

Pitch Control IC for The Speech Signal

GENERAL DESCRIPTION

The MSM6722 converts in real-time the pitch of the speech signal in a range of one octave upward or downward.

Two pitch control methods can be selected. One is to change the pitch in 17 steps by two switch inputs, and the other is to select one of 16 steps by four binary input lines.

Since a microphone preamplifier and a low-pass filter are built in, the pitch conversion set can easily be configured by connecting a microphone, amplifier, and speaker in the peripheral circuit. The MSM6722 is functionally compared to the MSM6322, as described below.

1.Speech pitch step reset (UP/DW mode)

MSM6322 ······ PRST pin only

MSM6722 PRST pin and UP•C (DW•C) pin available.

2. Change in pitch

MSM6322 Speech pitch is changeable in 17 steps.

3. Additional THR/CHA pin

This pin outputs a voice signal without passing the pitch conversion circuit including ADC•DAC.

FEATURES

- Built-in microphone preamplifier
- Built-in low-pass filters
- Built-in 8-bit AD converter
- Built-in 9-bit DA converter
- Speech pitch alterable in 17 steps (including the no pitch change step)
- Master clock frequency at 4 MHz
- 5 V single power supply
- Package : 24-pin plastic SOP (SOP24-P-430-1.27-K) (Product name : MSM6722GS-K) Chip

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

24-Pin Plastic SOP

PIN DESCRIPTIONS

Common to UP/DOWN Mode and BINARY Mode

Pin	Symbol	Туре	Description	
24	DV _{DD}	_	Digital power supply pin. Insert a bypass capacitor of 0.1 μF or more between this pin and DGND.	
20	DGND	_	Digital ground pin.	
12	AV _{DD}		Analog power supply pin. Insert a bypass capacitor of 0.1µF or more between this pin and AGND.	
18	AGND	—	Analog ground pin.	
16	MIN		Inverting input pins for the built-in OP amplifier. The non-inverting	
14	LIN	I	input pin is connected internally to SG.	
15	MOUT	0	MOUT and LOUT are output pins of the built-in OP amplifier for MIN	
13	LOUT	0	and LIN respectively.	
10	ADIN	Ι	Input pin for the built-in 8-bit AD converter.	
11	FOUT	0	Output pin from the built-in LPF. Connect to ADIN Pin.	
9	AOUT	0	Output pin from built-in LPF. This pin is used to output speech signals and to connect the amplifier for driving speaker.	
8	DAO	0	Output pin from built-in 9-bit DA converter.	
21	RESET	I	The IC enters the initial state when this pin is at the "L" level. At this time, the oscillation stops and the DA converter output (DAO) and audio output (AOUT) fall to the GND level. Then the IC returns to the initial state. The IC has a built-in power-on-reset circuit. For normal power-on reset operation, supply the power within 1 msec. If power cannot be supplied within 1 msec, apply a RESET pulse after the power is switched on.	
6	THR/CHG	I	Select pin for the pitch control or non-pitch control. With a "H" level input, the IC outputs a normal speech signal from the AOUT pin through the built-in OP amplifier. With a "L" level input, the IC outputs a pitch controlled speech signal from the AOUT pin.	
7	TEST	I	Test pin to be fixed to "L" level.	
23	хт	I	Crystal oscillator connecting pin. When using the external clock, use this pin as the input.	
22	XT	0	Crystal oscillator connecting pin. When using the external clock, this pin must be left OPEN.	
19	SG	0	These pins output the reference voltage (signal ground (SG)) of the	
17	SGC	U	analog circuit. The output is approximately $1/2$ the AV _{DD} level.	

UP/DOWN Mode Only

Pin	Symbol	Туре	Description	
5	MS	I	Mode select pin. This pin must always be tied low.	
2	UPC		Pins for raising or lowering the pitch by one step at a time. The pitch changes by one step upward (or downward) each time	
3	DWC		the "no pitch change" state when an "H" level pulse is input to these pins simultaneously.	
	DD	1	Power-down pin. All clocks, including the internal oscillator circuit, are	
			stopped when the PD pin is set to the "H" level.	
1			Pitch reset pin. The circuit enters the "no pitch change" state when	
4	rkol		this pin is set to the "H" level.	

Binary Mode Only

Pin	Symbol	Туре	Description
5	MS	Ι	Mode select pin. This pin must always be tied high.
1	P3		The pitch step is directly set by 4 pins (bits) of P3 (MSB) to P0 (LSB).
2	P2		One of the 16 steps from step 0 (P3=P2=P1=P0="L") to step 15(P3=P2=
3	P1		P1=P0="H") can be set.
4	P0		

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power-supply voltage	V _{DD}	Ta = 25°C	-0.3 to +7.0	V
Input voltage	V _{IN}	Ta = 25°C	-0.3 to V _{DD} + 0.3	V
Storage temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Power-supply voltage	V _{DD}	DGND = AGND = 0 V	4.5 to 5.5	V
Operating temperature	T _{op}	—	-10 to +70	°C
Master clock frequency	f _{OSC}		4 to 4.5	MHz

ELECTRICAL CHARACTERISTICS

DC Characteristics

$(Ta = -10 \text{ to } 70^{\circ}\text{C}, DV_{DD} = AV_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, DGND = AGND = 0 \text{ V}$						= 0 V)	
Parameter		Symbol	Condition	Min	Тур	Max	Unit
"H" input voltage		V _{IH}	—	0.8 x V _{DD}	_	—	V
"L" input voltage		VIL			—	$0.2 \times V_{DD}$	V
"H" input current	*1	I _{IH1}	$V_{IH} = V_{DD}$			10	μA
"H" input current	*2	I _{IH2}	$V_{IH} = V_{DD}$	_	_	20	μA
"H" input current	*4	I _{IH3}	$V_{IH} = V_{DD}$	20	_	650	μA
"L" input current	*3	I _{IL1}	V _{IL} = GND	-10	_	—	μA
"L" input current	*2	I _{IL2}	V _{IL} = GND	-20	_	—	μA
Operating current consumpt (1)	ion	I _{DD}	f _{OSC} = 4 MHz, no load		6	12	mA
Operating current consumpt	ion		At power down, no load Ta=–40 to +70°C	_	_	10	μA
(2)		IPD	At power down, no load Ta=–40 to +85°C		_	50	μA

*1 Applies to all input pins excluding the XT pin.

*2 Applies to the XT pin.

*3 Applies to all the input pins without pull-down resistors, excluding the XT pin (i.e., pins 1, 5-7, 10, 14, 16, 21; however pin 1 is applied only during UP/DOWN mode).

*4 Applies to the input pins with pull-down resistors, excluding the XT pin (i.e., pins 1, 2, 3, 4; however, pin 1 is applied only during BINARY mode).

Analog Characteristics

$(Ta = -10 \text{ to } +70^{\circ}\text{C}, \text{ DV}_{\text{DD}} = \text{AV}_{\text{DD}} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ DGND} = \text{AGND} = 0 \text{ V})$						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
DA output relative error	I V _{DAE} I	No load	—	_	40	mV
AD output relative error	I V _{ADE} I	No load	—		40	mV
SCF allowable input voltage range	V _{FIN}	_	1	_	V _{DD} -1	V
SCF input impedance	R _{FIN}		1	—	—	MΩ
OP amplifier open loop gain	G _{OP}	f _{IN} = 0 to 4 kHz	40	—	—	dB
OP amplifier input impedance	R _{INA}	—	1			MΩ
OP amplifier load resistance	ROUTA	_	200		_	kΩ

AC Characteristics

 $(Ta = -10 \text{ to } +70^{\circ}\text{C}, f_{OSC} = 4 \text{ MHz}, \text{DV}_{DD} = \text{AV}_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{DGND} = \text{AGND} = 0 \text{ V})$

Parameter	Symbol	Condition	Min	Max	Unit
DAO output delay from falling edge of PD	t _{PDD}	f _{OSC} = 4 MHz	—	16	ms
Pulse width of PRST, UPC, and DWC pulses	t _{UDPW}	f _{OSC} = 4 MHz	62		ms
Time between UPC and DWC pulses	t _{RUD}	f _{OSC} = 4 MHz	31		ms
Pitch change delay from rising edge of PRST	t _{CHG1}	f _{OSC} = 4 MHz	62	_	ms
Pitch change delay from rising edge of UPC and DWC	t _{CHG2}	f _{OSC} = 4 MHz	31		ms

TIMING DIAGRAM

FUNCTIONAL DESCRIPTION

Power Supply Wiring

As shown in the diagram below, supply the power to this IC from the same power source, but separate the wiring for the analog and the logic sections.

To improve the electrical characteristics, insert a bypass capacitor of 0.1 μ F or more between DV_{DD} and DGND and between AV_{DD} and AGND.

Do not supply the power to the analog section and the logic section from separate power sources; otherwise latch-up may occur.

Connecting an Oscillator

Connect ceramic or crystal oscillators to the XT and \overline{XT} pins as shown below.

The optimal load capacitance values when connecting ceramic oscillators of MURATA MFG. and KYOCERA CORPORATION are shown below for reference.

	Optimal load	capacitance		
	Model name	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)
	CSA4.00MG	4.0	30	30
MURATA MFG.	CST4.00MGW (with capacitor)	4.0		
	KBR-4.0MSA			
KYOCERA CORPORATION	KBR-4.0MKS	4.0	33	33
	PBRC4.00B]		

Analog Input Amplifier Circuit

The MSM6722 has two built-in operational amplifiers for amplifying the microphone output. Each output amplifier is provided with an inverting input pin and output pin. The analog circuit reference voltage SG (signal ground) is connected internally to the non-inverting input of each output amplifier. For amplification, form an inverting amplifier circuit and adjust the amplification ratio by using external resistors, as shown below.

The output V_{LO} of output amplifier 2 is connected to the input FIN of the built-in LPF. The FIN allowable input voltage (V_{FIN}) ranges from 1 V to (V_{DD} –1) V. Therefore, the amplification ratio must be adjusted so that the V_{LO} amplitude can be within the FIN allowable input voltage range. For example, if V_{DD} = 5 V, V_{LO} becomes 3 V_{p-p} max. If V_{LO} exceeds the FIN allowable input voltage range the output of the LPF will be a clipped waveform. The load resistance R_{OUTA} of the OP amplifier is 200 k Ω or more. Therefore, the feedback resistors R2 and R4 of the inverting amplifier circuit must be 200 k Ω or more.

Analog Reference Voltage (SG, SGC)

The SG and SGC pins are connected to external capacitors for stabilizing the internal analog reference voltage of $1/2 \text{ AV}_{\text{DD}}$. Connect these pins to ground through a capacitor of several microfarads (C₅, C₆), as shown below.

Analog Reference Voltage Block

Pitch-Control Circuit

[BINARY mode] (P3, P2, P1, P0)

As shown in the diagram below, this IC has an internal prevention circuit for approximately 62 ms of chattering. Therefore, hold these pins at "H" level for 62 ms or more. P3, P2, P1, and P0 pins are used to directly set the pitch steps.

Sixteen pitch steps are provided, but step 16 cannot be set.

[UP/DOWN mode] (UPC, DWC, PRST)

As shown in the diagram below, this IC has an internal prevention circuit for approximately 62 ms of chattering . Therefore, hold these pins at "H" level for 62 ms or more.

Pitch-Control Circuit

Inputting a "H" level pulse to the UPC pin raises the pitch by one step, and inputting a "H" level pulse to the DWC pin lowers the pitch by one step. Inputting a "H" level pulse to the PRST pin or to the UPC and DWC pins at the same time sets the no-pitch change state (pitch step 8).

A pitch shifts in a range of one octave upward or downward, centered at pitch step 8. The pitch shift is illustrated in the following keyboard diagram and the following table via corresponding frequencies.

Pitch Conversion Diagram

Pitch Conversion Table

Pitch step	DA sampling cycle (μs)/ frequency (kHz)
16	60/16.6
15	71/14.0
14	76/13.1
13	80/12.5
12	90/11.1
11	90/10.5
10	101/9.90
9	113/8.84
8	120/8.33
7	127/7.87
6	143/6.99
5	151/6.62
4	160/6.25
3	180/5.55
2	190/5.26
1	202/4.95
0	227/4.40

MSM6722

APPLICATION CIRCUITS

UP/DOWN Mode

PAD CONFIGURATION

Pad Layout

Chip Size : 3.99×3.08 (mm)

Pad Coordinates

(Chip center is located at X=0 and Y=0.)

Pad No	PAD name	X (um)	Y (um)
1	PD	-1784	-602
2	UPC	-1784	-955
3	DWC	-1784	-1310
4	PRST	-1314	-1391
5	MS	-736	-1397
6	THR/CHG	-275	-1397
7	TEST	53	-1397
8	DAO	912	-1396
9	AOUT	1447	-1396
10	ADIN	1783	-974
11	FOUT	1783	-561
12	AV _{DD}	1733	-238

Pad No	PAD Name	X (um)	Y (um)
13	LOUT	1782	356
14	LIN	1782	780
15	MOUT	1782	1193
16	MIN	1351	1359
17	SGC	938	1359
18	AGND	598	1295
19	SG	-127	1359
20	DGND	-650	1359
21	RESET	-1198	1359
22	XT	-1787	1053
23	XT	-1786	703
24	DV _{DD}	-1736	84

PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).